

DCJ-003-2016002 Seat No. _____

B. Sc. (Sem. VI) (CBCS) Examination

July - 2022

Math-09(A): Mathematical Analysis-II & Abstract Algebra-II

Faculty Code: 003 Subject Code: 2016002 Time : $2\frac{1}{2}$ Hours] [Total Marks: 70 **Instructions:** All questions are compulsory. Figure to the right indicate full marks of the question. 1 (A) Answer the following questions in short: 4 (1) Define: Sequentially Compact. (2) Define: Countable set. (3) Define: Compact set. (4) True OR false: [0, 1] is a connected subset of \mathbb{R} . 2 (B) Answer any **one** in brief: (1) Show that (0, 1] is not a compact subset of \mathbb{R} . (2) Show that \mathbb{R} is not a sequentially compact. (C) Answer any **one** in detail : 3 Show that \mathbb{Z} is countable. (2) Prove that continuous image of a compact set is compact. 5 (D) Answer any one: Show that every compact subset of a metric space is bounded. (2) Prove that every closed subset of a compact metric space is compact. Answer the following questions in short: 4 Find $L(t^3)$.

2

(2) Find
$$L^{-1} \left(\frac{s^2 - 3s + 4}{s^3} \right)$$
.

(3) Find convolution product of $f(t) = \sin t$ and g(t) = t.

1

(4) Find $L^{-1}\left(\frac{1}{s-3}\right)$.

DCJ-003-2016002]

[Contd...

(B)	Answer	any	one	in	brief	:

(1) Find Laplace transform of
$$f(t) = \begin{cases} 3 & 0 < t < 5 \\ 0 & t > 5 \end{cases}$$
.

(2) Find
$$L^{-1}(F(s))$$
. Where $F(s) = \log \frac{s+a}{s+b}$.

3

2

(1) Find Laplace transform of
$$f(t) = (\sin 2t - \cos 2t)^2$$
.

(2) Find inverse Laplace transform of
$$F(s) = \frac{3s+7}{s^2-2s-3}$$
.

5

(1) Evaluate
$$\int_0^\infty e^{-2t} \sin^3 t \, dt$$
.

(2) Find the inverse Laplace transform of

$$\frac{s^2}{(s^2+a^2)(s^2+b^2)}.$$

4

(2) Find
$$L\{(t+1)^2\}$$
.

(3) If
$$L\{f(t)\} = F(s)$$
, then $L\left\{\frac{f(t)}{t}\right\} = ?$

2

(1) Find
$$L(4t^2 + \sin 3t + e^{2t})$$
.

(2) Find
$$L(\sin 2t - \cos 2t)^2$$
.

If
$$L\{f(t)\} = F(s)$$
, then $L\{f(at)\} = \frac{1}{a}F\left(\frac{s}{a}\right)$.

(2) Prove that:

If
$$L\{f(t)\} = F(s)$$
, then $L\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} F(s)$.

(D)	Answ	ver any one :	5	
	(1)	Find $L(\cosh at \cos at)$.		
	(2)	Using convolution theorem find $L^{-1}\left(\frac{1}{(s-2)(s+1)^2}\right)$.		
(A)	Answ	ver the following questions in short:	4	
	(1)	Define: Group homomorphism.		
	(2)	How many units in the $(\mathbb{Z}_{10}, +_{10}, \times_{10})$? List them.		
		Let $f: G \to G$; $f(g) = g(g \in G)$ be a group homomorphism. Find ker f .		
	(4)	List all the ideals of the ring $(\mathbb{Q},+,\cdot)$.		
(B)	Answ	ver any one in brief:	2	
()	(1)	Does union of two subrings of a ring is a subring of the ring? Justify.		
	` ′	Show that in an integral domain 1 and 1 are the only idempotent elements.		
(C)	Answ	ver any one in detail :	3	
	(1)	Let $f: G \to \overline{G}$ be a group homomorphism. Show that		
		f is one-one iff ker $f = \{e\}$.		
		Let R be a commutative ring and $a \in R$. Show that $A = \{x \in R \mid ax = 0\}$ is an ideal in R .		
(D)	Answer any one:			
	(1)	Prove that field has no proper ideal.		
		State and prove Fundamental Theorem of group homomorphism.		
(A)	Answ	ver the following questions in short:	4	
(2.1)		Give an example of a non-commutative ring with unity.	•	

5

4

g = (-1,8,2,-2,0,0,0,....), then find f + g. (3) True or False: Every integral domain is a field.

(2) If f = (2,-1,0,11,0,0,0,....) and

(4) Define: Integral domain.

- (B) Answer any one in brief:
 - (1) Let $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a ring under usual addition and multiplication. Find inverse of $-1 + 2\sqrt{2}$ in $\mathbb{Q}[\sqrt{2}]$.
 - (2) Does $S = \{A \in M_2(\mathbb{R}) \mid \text{ det } (A) = 0\}$ is subring of $(M_2(\mathbb{R}), +, \cdot)$? Justify.
- (C) Answer any one in detail:
 - (1) Show that the polynomial $f(x) = 8x^3 + 6x^2 9x + 24$ is irreducible over \mathbb{Q} .
 - (2) Prove that for any prime p, the p^{th} cyclotomic polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1$$

is irreducibel over \mathbb{Q} .

- (D) Answer any one:
 - (1) If F is a field, then show that F[x] is never a field.
 - (2) State and prove division algorithm in F[x], where F is a field.

2

3

5